

vi Editor Pocket
Reference

Arnold Robbins

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

vi Editor Pocket Reference™
by Arnold Robbins

Copyright © 1999 O’Reilly Media , Inc. All rights reserved.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information, contact our cor-
porate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Gigi Estabrook
Production Editor: Mary Anne
Weeks Mayo

Cover Designer: Edie Freedman

Printing History:
January 1999: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designations, vi Editor Pocket Reference, the image
of a tarsier and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations uses by manufacturers and sellers to dis-
tinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in
caps or initial caps

While every precaution has been taken in the preparation of this
book, the publisher and authors assume no responsibility for errors
or omissions, or for damages resulting from the use of the informa-
tion contained herein.

ISBN-10: 1-565-92497-5
ISBN-13: 978-1-565-92497-0

Table of Contents

1. vi Editor Pocket Reference 1
Introduction 1
Conventions 1
1.1. Command-Line Options 2
1.2. vi Commands 3
1.3. Input Mode Shortcuts 8
1.4. Substitution and Regular Expressions 10
1.5. ex Commands 15
1.6. Initialization and Recovery 19
1.7. vi Options 20
1.8. Enhanced Tags and Tag Stacks 22
1.9. nvi—New vi 23
1.10. elvis 28
1.11. vim—vi Improved 35
1.12. vile—vi Like Emacs 50
1.13. Clone Source and Contact Information 57

v

vi Editor Pocket
Reference

Introduction
This pocket reference is a companion to Learning the vi Edi-
tor, by Linda Lamb and Arnold Robbins. It describes the vi
command-line options, command mode commands, ex com-
mands and options, regular expressions and the use of the
substitute (s) command, and other pertinent information for
using vi. Also covered are the additional features in the four
vi clones, nvi, elvis, vim, and vile.

The Solaris 2.6 version of vi served as the “reference” version
of vi for this pocket reference.

Conventions
The following font conventions are used in this book:

Courier
Used for command names, options, and everything to be
typed literally

Courier Italic
Used for replaceable text within commands

1

Italic
Used for replaceable text within regular text, program
names, filenames, paths, for emphasis, and new terms
when first defined

[…]
Identifies optional text; the brackets are not typed

CTRL-G
Indicates a keystroke

Command-Line Options
Command Action

vi file Invoke vi on file

vi file1 file2 Invoke vi on files sequentially

view file Invoke vi on file in read-only mode

vi -R file Invoke vi on file in read-only mode

vi -r file Recover file and recent edits after a crash

vi -t tag Look up tag and start editing at its definition

vi -w n Set the window size to n ; useful over a slow connection

vi + file Open file at last line

vi + n file Open file directly at line number n

vi -c command file Open file, execute command, which is usually a search
command or line number (POSIX)

vi +/ pattern file Open file directly at pattern

ex file Invoke ex on file

ex -file<script Invoke ex on file, taking commands from script ; sup-
press informative messages and prompts

ex -sfile<script Invoke ex on file, taking commands from script ; sup-
press informative messages and prompts (POSIX)

2 | vi Editor Pocket Reference

vi Commands
Most vi commands follow a general pattern:

[command][number]text
object

or the equivalent form:

[number][command]text
object

Movement Commands

Command Meaning

Character

h, j, k, l Left, down, up, right (, , ,)

Text

w, W, b, B Forward, backward by word

e, E End of word

), (Beginning of next, previous sentence

}, { Beginning of next, previous paragraph

] ], [ [Beginning of next, previous section

Lines

RETURN First nonblank character of next line

0, $ First, last position of current line

^ First nonblank character of current line

+, - First nonblank character of next, previous line

n | Column n of current line

H Top line of screen

M Middle line of screen

L Last line of screen

nH n (number) of lines after top line

nL n (number) of lines before last line

vi Commands | 3

Command Meaning

Scrolling

CTRL-F , CTRL-B Scroll forward, backward one screen

CTRL-D , CTRL-U Scroll down, up one-half screen

CTRL-E , CTRL-Y Show one more line at bottom, top of window

z RETURN Reposition line with cursor: to top of screen

z  . Reposition line with cursor: to middle of screen

z  – Reposition line with cursor: to bottom of screen

CTRL-L Redraw screen (without scrolling)

Searches

/pattern Search forward for pattern

?pattern Search backward for pattern

n, N Repeat last search in same, opposite direction

/, ? Repeat previous search forward, backward

fx Search forward for character x in current line

Fx Search backward for character x in current line

tx Search forward to character before x in current line

Tx Search backward to character after x in current line

; Repeat previous current-line search

, Repeat previous current-line search in opposite direction

Line number

CTRL-G Display current line number

nG Move to line number n

G Move to last line in file

:n Move to line n in file

Marking position

mx Mark current position as x

‘x Move cursor to mark x

‘‘ Return to previous mark or context

4 | vi Editor Pocket Reference

Command Meaning

’x Move to beginning of line containing mark x

’ ’ Return to beginning of line containing previous mark

Editing Commands

Command Action

Insert

i, a Insert text before, after cursor

I, A Insert text before beginning, after end of line

o, O Open new line for text below, above cursor

Change

r Replace character

cw Change word

cc Change current line

cmotion Change text between the cursor and the target of motion

C Change to end of line

R Type over (overwrite) characters

s Substitute: delete character and insert new text

S Substitute: delete current line and insert new text

Delete, move

x Delete character under cursor

X Delete character before cursor

dw Delete word

dd Delete current line

dmotion Delete text between the cursor and the target of motion

D Delete to end of line

p, P Put deleted text after, before cursor

"np Put text from delete buffer number n after cursor (for last
nine deletions)

vi Commands | 5

Command Action

Yank

yw Yank (copy) word

yy Yank current line

"ayy Yank current line into named buffer a (a–z). Uppercase
names append text

ymotion Yank text between the cursor and the target of motion

p, P Put yanked text after, before cursor

"aP Put text from buffer a before cursor (a–z)

Other commands

. Repeat last edit command

u, U Undo last edit; restore current line

J Join two lines

ex edit commands

:d Delete lines

:m Move lines

:co or :t Copy lines

:.,$d Delete from current line to end of file

:30,60m0 Move lines 30 through 60 to top of file

:.,/pattern/co$ Copy from current line through line containing pattern to
end of file

Exit Commands

Command Meaning

ZZ Write (save) and quit file

:x Write (save) and quit file

:wq Write (save) and quit file

:w Write (save) file

:w! Write (save) file, overriding protection

6 | vi Editor Pocket Reference

Command Meaning

:30,60w newfile Write from line 30 through line 60 as newfile

:30,60w>>file Write from line 30 through line 60 and append to file

:w %.new Write current buffer named file as file.new

:q Quit file

:q! Quit file, overriding protection

Q Quit vi and invoke ex

:efile2 Edit file2 without leaving vi

:n Edit next file

:e! Return to version of current file at time of last write (save)

:e # Edit alternate file

:vi Invoke vi editor from ex

: Invoke one ex command from vi editor

% Current filename (substitutes into ex command line)

Alternate filename (substitutes into ex command line)

Solaris vi Command-Mode Tag Commands

Command Action

^] Look up the location of the identifier under the cursor in the tags file
and move to that location; if tag stacking is enabled, the current
location is automatically pushed onto the tag stack

^T Return to the previous location in the tag stack, i.e., pop off one element

Buffer Names

Buffer Names Buffer Use

1–9 The last nine deletions, from most to least recent

a–z Named buffers to use as needed; uppercase letters append to the
buffer

vi Commands | 7

Buffer and Marking Commands

Command Meaning

"b command Do command with buffer b

mx Mark current position with x

'x Move cursor to first character of line marked by x

`x Move cursor to character marked by x

` ` Return to exact position of previous mark or context

' ' Return to beginning of the line of previous mark or context

Input Mode Shortcuts

Word Abbreviation
:ababbr phrase

Define abbr as an abbreviation for phrase.

:unababbr
Remove definition of abbr.

Be careful with abbreviation texts that either end with the ab-
breviation name or contain the abbreviation name in the mid-
dle.

Command and Input Mode Maps
:map x sequence

Define character(s) x as a sequence of editing commands.

:unmap x
Disable the sequence defined for x.

:map
List the characters that are currently mapped.

:map! x sequence
Define character(s) x as a sequence of editing commands
or text that will be recognized in input mode.

8 | vi Editor Pocket Reference

:unmap! x
Disable the sequence defined for the input mode map x.

:map!
List the characters that are currently mapped for interpre-
tation in insert mode.

For both command and input mode maps, the map name x can
take several forms:

One character
When you type the character, vi executes the associated
sequence of commands.

Multiple characters
All the characters must be typed within one second. The
value of notimeout changes the behavior.

#n
Function key notation: a # followed by a digit n represents
the sequence of characters sent by the terminal’s function
key number n.

To enter characters such as Escape (^[) or carriage return (^M),
first type a CTRL-V (^V).

Executable Buffers
Named buffers provide yet another way to create “macros”—
complex command sequences you can repeat with a few key-
strokes. Here's how it's done:

1. Type a vi command sequence or an ex command preceded
by a colon ; return to command mode.

2. Delete the text into a named buffer.

3. Execute the buffer with the @ command followed by the
buffer letter.

The ex command :@buf-name works similarly.

Some versions treat * identically to @ when used from the ex
command line. In addition, if the buffer character supplied af-
ter the @ or * commands is *, the command is taken from the
default (unnamed) buffer.

Input Mode Shortcuts | 9

Automatic Indentation
You enable automatic indentation with the command:

:set autoindent

Four special input sequences affect automatic indentation:

^T
Add one level of indentation; typed in insert mode

^D
Remove one level of indentation; typed in insert mode

^ ^D
Shift the cursor back to the beginning of the line, but only
for the current line*

0 ^D
Shift the cursor back to the beginning of the line and reset
the current auto-indent level to zero†

Two commands can be used for shifting source code:

<<
Shift a line left eight spaces

>>
Shift a line right eight spaces

The default shift is the value of shiftwidth, usually eight spaces.

Substitution and Regular Expressions

The Substitute Command
The general form of the substitute command is:

:[addr1[,addr2]]s/old/new/[flags]

Omitting the search pattern (:s//replacement/) uses the last
search or substitution regular expression.

* ^ ^D and 0 ^D are not in elvis 2.0.
† The nvi 1.79 documentation has these two commands switched, but
the program actually behaves as described here.

10 | vi Editor Pocket Reference

An empty replacement part (:s/pattern//) “replaces” the
matched text with nothing, effectively deleting it from the line.

Substitution flags

Flag Meaning

c Confirm each substitution

g Change all occurrences of old to new on each line (globally)

p Print the line after the change is made

It's often useful to combine the substitute command with the
ex global command, :g:

:g/Object Oriented/s//Buzzword compliant/g

vi Regular Expressions
.

Matches any single character except a newline. Remember
that spaces are treated as characters.

*
Matches zero or more (as many as there are) of the single
character that immediately precedes it.

The * can follow a metacharacter, such as . or a range in
brackets.

^
When used at the start of a regular expression, ^ requires
that the following regular expression be found at the be-
ginning of the line. When not at the beginning of a regular
expression, ^ stands for itself.

$
When used at the end of a regular expression, $ requires
that the preceding regular expression be found at the end
of the line. When not at the end of a regular expression,
$ stands for itself.

Substitution and Regular Expressions | 11

\
Treats the following special character as an ordinary char-
acter. (Use \ \ to get a literal backslash.)

[]
Matches any one of the characters enclosed between the
brackets. A range of consecutive characters can be speci-
fied by separating the first and last characters in the range
with a hyphen.

You can include more than one range inside brackets and
specify a mix of ranges and separate characters.

Most metacharacters lose their special meaning inside
brackets, so you don’t need to escape them if you want to
use them as ordinary characters. Within brackets, the
three metacharacters you still need to escape are \ -]. (The
hyphen (-) acquires meaning as a range specifier; to use
an actual hyphen, you can also place it as the first char-
acter inside the brackets.)

A caret (^) has special meaning only when it's the first
character inside the brackets, but in this case, the meaning
differs from that of the normal ̂ metacharacter. As the first
character within brackets, a ^ reverses their sense: the
brackets match any one character not in the list. For ex-
ample, [^a-z] matches any character that's not a lowercase
letter.

\(\)
Saves the pattern enclosed between  \ (and  \ ) into a spe-
cial holding space or “hold buffer.” Up to nine patterns
can be saved in this way on a single line.

You can also use the \n notation within a search or sub-
stitute string:
:s/\(abcd\)\1/alphabet-soup/

changes abcdabcd into alphabet-soup.‡

‡ This works with vi, nvi, and vim, but not with elvis 2.0, vile 7.4, or
vile 8.0.

12 | vi Editor Pocket Reference

\< \>
Matches characters at the beginning (\<) or end (\>) of a
word. The end or beginning of a word is determined either
by a punctuation mark or by a space. Unlike \(…\), these
don't have to be used in matched pairs.

~
Matches whatever regular expression was used in the
last search.

POSIX Bracket Expressions
POSIX bracket expressions may contain the following:

Character classes
A POSIX character class consists of keywords bracketed
by [: and :]. The keywords describe different classes of
characters such as alphabetic characters, control charac-
ters, and so on (see the following table).

Collating symbols
A collating symbol is a multicharacter sequence that
should be treated as a unit. It consists of the characters
bracketed by [. and .].

Equivalence classes
An equivalence class lists a set of characters that should
be considered equivalent, such as e and è. It consists of a
named element from the locale, bracketed by [= and =].

All three constructs must appear inside the square brackets of
a bracket expression.

POSIX character classes

Class Matching Characters

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:blank:] Space and tab characters

[:cntrl:] Control characters

Substitution and Regular Expressions | 13

Class Matching Characters

[:digit:] Numeric characters

[:graph:] Printable and visible (nonspace) characters

[:lower:] Lowercase characters

[:print:] Printable characters (includes whitespace)

[:punct:] Punctuation characters

[:space:] Whitespace characters

[:upper:] Uppercase characters

[:xdigit:] Hexadecimal digits

Metacharacters Used in Replacement Strings
\n

Is replaced with the text matched by the n th pattern pre-
viously saved by \(and \), where n is a number from 1 to
9, and previously saved patterns (kept in hold buffers) are
counted from the left on the line.

\
Treats the following special character as an ordinary char-
acter. To specify a real backslash, type two in a row ( \ \ ).

&
Is replaced with the entire text matched by the search pat-
tern when used in a replacement string. This is useful
when you want to avoid retyping text.

~
The string found is replaced with the replacement text
specified in the last substitute command. This is useful for
repeating an edit.

\u or \l
Changes the next character in the replacement string to
upper- or lowercase, respectively.

\U or \L and \e or \E
\U and \L are similar to \u or \l, but all following characters
are converted to upper- or lowercase until the end of the

14 | vi Editor Pocket Reference

replacement string or until \e or \E is reached. If there is
no \e or \E, all characters of the replacement text are af-
fected by the \U or \L.

More Substitution Tricks
• You can instruct vi to ignore case by typing :set ic.

• A simple :s is the same as :s//~/.

• :& is the same as :s. You can follow the & with a g to make
the substitution globally on the line, and even use it with
a line range.

• The & key can be used as a vi command to perform
the :& command, i.e., to repeat the last substitution.

• The :~ command is similar to the :& command, but with
a subtle difference. The search pattern used is the last reg-
ular expression used in any command, not necessarily the
one used in the last substitute command.

• Besides the / character, you may use any nonalphanu-
meric, nonwhitespace character as your delimiter, except
backslash, double-quote, and the vertical bar (\, ", and
|).

• When the edcompatible option is enabled, vi remembers
the flags (g for global and c for confirmation) used on the
last substitute and applies them to the next one.

ex Commands

Command Syntax
:[address] command [options]

Address Symbols

Address Includes

1,$ All lines in the file

ex Commands | 15

Address Includes

x,y Lines x through y

x;y Lines x through y, with current line reset to x

0 Top of file

. Current line

n Absolute line number n

$ Last line

% All lines; same as 1,$

x-n n lines before x

x+n n lines after x

-[n] One or n lines previous

+[n] One or n lines ahead

’x Line marked with x

’’ Previous mark

/pat/ or ?pat? Ahead or back to line where pat matches

Command Option Symbols

Symbol Meaning

! A variant form of the command

count Repeat the command count times

file Filename: % is current file, # is previous file

Alphabetical List of Commands

Full Name Command

Abbrev ab [string text]

Append [address]a[!] text

.

Args ar

16 | vi Editor Pocket Reference

Full Name Command

Change [address] c[!] text

.

Copy [address] co destination

Delete [address] d [buffer]

Edit e [!][+n] [filename]

File f [filename]

Global [address]g[!]/pattern/[commands]

Insert [address]i[!]

text

.

Join [address]j[!][count]

K (mark) [address] k char

List [address] l [count]

Map mapchar commands

Mark [address] ma char

Move [address] m destination

Next n[!] [[+command] filelist]

Number [address] nu [count]

Open [address] o [/pattern/]

Preserve pre

Print [address] p [count] [address] P [count]

Put [address] pu [char]

Quit q[!]

Read [address] r filename

Read [address] r ! command

Recover rec [filename]

Rewind rew[!]

ex Commands | 17

Full Name Command

Set set

setoption

set nooption

6set option=value

setoption?

Shell sh

Source sofilename

Substitute [addr] s [/pat/repl/][opts]

T (to) [address]t destination

Tag [address] ta tag

Unabbreviate unaword

Undo u

Unmap unmchar

V (global exclude) [address] v/pattern/[commands]

Version ve

Visual [address] vi [type] [count]

Visual vi [+n] [filename]

Write [address] w[!] [[>>]filename]

Write [address] w !command

Wq (write + quit) wq[!]

Xit x

Yank [address] y [char] [count]

Z (position line) [address] z[type] [count]

type can be one of:

+
Place line at the top of the window (default)

-
Place line at bottom of the window

18 | vi Editor Pocket Reference

Full Name Command
.

Place line in the center of the window

^
Print the previous window

=
Place line in the center of the window and leave the
current line at thisline

! [address] !command

= (line number) [address] =

< > (shift) [address] < [count]

[address] > [count]

Address address

Return (next line) RETURN

& [address] & [options] [count] repeat substitute

~ [address]~[count] Like &, but with last used regular ex-
pression; for details, see Chapter 6 of Learning the vi Editor

Initialization and Recovery

Initialization
vi performs the following initialization steps:

1. If the EXINIT environment variable exists, execute the com-
mands it contains. Separate multiple commands by a pipe
symbol (|).

2. If EXINIT doesn't exist, look for the file $HOME/.exrc. If it
exists, read and execute it.

3. If either EXINIT or $HOME/.exrc turns on the exrc option,
read and execute the file ./.exrc, if it exists.

4. Execute search or goto commands given with +/pattern
or +n command-line options (POSIX: –c option).

Initialization and Recovery | 19

The .exrc files are simple scripts of ex commands; they don't
need a leading colon. You can put comments in your scripts by
starting a line with a double quote ("). This is recommended.

Recovery
The commands ex -r or vi -r list any files you can recover.
You then use the command:

$ vi -r file

to recover a particular file.

Even without a crash, you can force the system to preserve your
buffer by using the command :pre (preserve).

vi Options
Option Default

autoindent (ai) noai

autoprint (ap) ap

autowrite (aw) noaw

beautify (bf) nobf

directory (dir) /tmp

edcompatible noedcompatible

errorbells (eb) errorbells

exrc (ex) noexrc

hardtabs (ht) 8

ignorecase (ic) noic

lisp nolisp

list nolist

magic magic

mesg mesg

novice nonovice

number (nu) nonu

20 | vi Editor Pocket Reference

Option Default

open open

optimize (opt) noopt

paragraphs (para) IPLPPPQP LIpplpipbp

prompt prompt

readonly (ro) noro

redraw (re)

remap remap

report 5

scroll half window

sections (sect) SHNHH HU

shell (sh) /bin/sh

shiftwidth (sw) 8

showmatch (sm) nosm

showmode noshowmode

slowopen (slow)

tabstop (ts) 8

taglength (tl) 0

tags tags/usr/lib/tags

tagstack tagstack

term (from $TERM)

terse noterse

timeout (to) timeout

ttytype (from $TERM)

warn warn

window (w)

wrapscan (ws) ws

wrapmargin (wm) 0

writeany (wa) nowa

vi Options | 21

Enhanced Tags and Tag Stacks

Exuberant ctags
The “Exuberant ctags” program was written by Darren Hie-
bert (home page: http://home.hiwaay.net/~darren/ctags/). As of
this writing, the current version is 2.0.3.

This enhanced tags file format has three tab-separated fields:
the tag name (typically an identifier), the source file containing
the tag, and where to find the identifier. Extended attributes
are placed after a separating ;". Each attribute is separated from
the next by a tab character and consists of two colon-separated
subfields. The first subfield is a keyword describing the attrib-
ute; the second is the actual value.

Extended ctags keywords

Keyword Meaning

kind The value is a single letter that indicates the lexical type of the tag

file For static tags, i.e., local to the file

function For local tags

struct For fields in a struct

enum For values in an enum data type

class For C++ member functions and variables

scope Intended mostly for C++ class member functions

arity For functions

If the field doesn't contain a colon, it's assumed to be of type
kind.

Within the value part of each attribute, the backslash, tab, car-
riage return, and newline characters should be encoded as \\,
\t, \r, and \n, respectively.

22 | vi Editor Pocket Reference

Solaris 2.6 vi Tag Stacking

Tag commands

Command Function

ta[g][!] tagstring Edit the file containing tagstring as defined in the tags file

po[p][!] Pop the tag stack by one element

Command-mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file
and move to that location; if tag stacking is enabled, the current
location is automatically pushed onto the tag stack

^T Return to the previous location in the tag stack, i.e., pop off one element

Options for tag management

Option Function

taglength, tl Controls the number of significant characters in a tag that is to
be looked up; the default value of zero indicates that all char-
acters are significant

tags, tagpath The value is a list of filenames in which to look for tags; the
default value is "tags /usr/lib/tags"

tagstack When set to true, vi stacks each location on the tag stack

nvi—New vi

Important Command-Line Arguments
–ccommand

Execute command at startup.

–F
Don’t copy the entire file when starting to edit.

nvi—New vi | 23

–R
Start in read-only mode, setting the readonly option.

–S
Run with the secure option set, disallowing access to ex-
ternal programs.

–s
Enter batch (script) mode. This is only for ex and is in-
tended for running editing scripts. Prompts and nonerror
messages are disabled.

nvi Window Management Commands

Command Function

bg Hide the current window

di[splay] b[uffers] Display all buffers, including named, unnamed, and nu-
meric buffers

di[splay] s[creens] Display the filenames of all backgrounded windows

Editfilename Edit filename in a new window

Edit /tmp Create a new window editing an empty buffer; /tmp is
interpreted especially to create a new temporary file

fgfilename Uncover filename into the current window

Fgfilename Uncover filename in a new window; the current window
is split

Next Edit the next file in the argument list in a new window

Previous Edit the previous file in the argument list in a new window

resize ±nrows Increase or decrease the size of the current window by
nrows rows

Tagtagstring Edit the file containing tagstring in a new window

The ^W command cycles between windows, top to bottom.
The :q and ZZ commands exit the current window.

You may have multiple windows open in the same file.
Changes made in one window are reflected in the other.

24 | vi Editor Pocket Reference

Extended Regular Expressions
You use :set extended to enable extended regular expression
matching:

|
Indicates alternation. The left and right sides don't need
to be single characters.

(…)
Used for grouping, to allow the application of additional
regular expression operators.

+
Matches one or more of the preceding regular expressions.
This is either a single character or a group of characters
enclosed in parentheses.

?
Matches zero or one occurrence of the preceding regular
expression.

{…}
Defines an interval expression. Interval expressions de-
scribe counted numbers of repetitions. In the following
description, n and m represent integer constants:

{n}
Matches exactly n repetitions of the previous regular
expression.

{n,}
Matches n or more repetitions of the previous regular
expression.

{n,m}
Matches n to m repetitions.

When extended isn't set, use \{ and \}.

When extended is set, you should precede the above metachar-
acters with a backslash in order to match them literally.

nvi—New vi | 25

Command-Line History and Completion Options

Option Description

cedit The first character of this string, when used on the colon command line,
provides access to the command history; hitting RETURN on any given
line executes that line

filec The first character of this string, when used on the colon command line,
does shell-style filename expansion; when this character is the same as
for the cedit option, command-line editing is performed only when the
character is entered as the first character on the colon command line

Tag Stacks

Tag commands

Command Function

di[splay] t[ags] Display the tag stack

ta[g][!] tagstring Edit the file containing tagstring as defined in the tags file

Ta[g][!] tagstring Just like :tag, except that the file is edited in a new
window

tagp[op][!] tagloc Pop to the given tag, or to the most recently used tag if
no tagloc is supplied

tagt[op][!] Pop to the oldest tag in the stack, clearing the stack in the
process

Command-mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file
and move to that location; the current location is automatically pushed
to the tag stack

^T Return to the previous location in the tag stack

26 | vi Editor Pocket Reference

nvi 1.79 Additional Set Options

Option Default

backup

cdpath Environment variable $CDPATH, or current directory

cedit

comment nocomment

directory (dir) $TMPDIR, or /tmp

extended noextended

filec

iclower noiclower

leftright noleftright

lock lock

octal nooctal

path

recdir /var/tmp/vi.recover

ruler noruler

searchincr nosearchincr

secure nosecure

shellmeta ~{[*?$`'"\

showmode (smd) noshowmode

sidescroll 16

taglength (tl) 0

tags (tag) tags/var/db/libc.tags/sys/kern/tags

tildeop notildeop

wraplen (wl) 0

nvi—New vi | 27

elvis

Important Command-Line Arguments
–a

Load each file named on the command line to a separate
window.

–R
Start editing each file in read-only mode.

–i
Start editing in input mode instead of in command mode.

–s
Set the safer option for the whole session, not just exe-
cution of .exrc files. In elvis 2.1, this option is renamed to
–S, and (following the POSIX standard) –s provides ex
scripting.

–ffilename
Use filename for the session file instead of the default
name.

–Ggui
Use the given interface.

–ccommand
Execute command at startup (POSIX version of the his-
toric +command syntax).

–V
Output more verbose status information.

–?
Print a summary of the possible options.

elvis Window Management Commands

Command Function

sp[lit] [file] Create a new window; load it with file if supplied; otherwise,
the new window shows the current file

28 | vi Editor Pocket Reference

Command Function

new Create a new empty buffer and then create a new window
to show that buffersne[w]

sn[ext] [file…] Create a new window, showing the next file in the argument
list

sN[ext] Create a new window, showing the previous file in the
argument list

sre[wind][!] Create a new window, showing the first file in the argument
list; reset the “current” file as the first with respect to
the :next command

sl[ast] Create a new window, showing the last file in the argument
list

sta[g][!] tag Create a new window showing the file where the requested
tag is found

sa[ll] Create a new window for any files named in the argument
list that don’t already have a window

wi[ndow] [target] With no target, list all windows; the possible values for
target are described in the following table

close Close the current window; the buffer that the window was
displaying remains intact

wquit Write the buffer back to the file and close the window; the
file is saved whether or not it has been modified

qall Issue a :q command for each window; buffers without
windows are not affected

Arguments to the :window command

Argument Meaning

+ Switch to the next window, like ^W k

++ Switch to the next window, wrapping like ^W ^W

- Switch to the previous window, like ^W j

- - Switch to the previous window, wrapping

num Switch to the window whose windowid =num

elvis | 29

Argument Meaning

buffer-name Switch to the window editing the named buffer

Window commands from vi command mode

Command Function

^W c Hide the buffer and close the window

^W d Toggle the display mode between “normal” and the buffer’s
usual display mode; this is a per-window option

^W j Move down to the next window

^W k Move up to the previous window

^W n Create a new window and a new buffer to be displayed in the
window

^W q Save the buffer and close the window

^W s Split the current window

^W S Toggle the wrap option; this option controls whether long lines
wrap or whether the whole screen scrolls to the right, and is a
per-window option

^W] Create a new window, then look up the tag underneath the
cursor

[count] ^W ^W Move to next window, or to the count th window

^W + Increase the size of the current window (termcap interface only)

^W - Reduce the size of the current window (termcap interface only)

^W \ Make the current window as large as possible (termcap interface
only)

Extended Regular Expressions
\+

Matches one or more of the preceding regular expressions

\?
Matches zero or one of the preceding regular expressions

30 | vi Editor Pocket Reference

\@
Matches the word under the cursor

\=
Indicates where to put the cursor when the text is matched

\{…\}
Describes an interval expression

POSIX bracket expressions (character classes, etc.) don't work
in elvis 2.0 (fixed in 2.1), nor is alternation with the | character
or grouping with parentheses available.

Command-Line History and Completion Movement Keys

Key Effect

 , Page up and down through the Elvis ex history buffer

, → Move around on the command line

Insert characters by typing and erase them by backspacing over
them.

The TAB key can be used for filename expansion.

To get a real tab character, precede it with a ^V. Disable file-
name completion entirely by setting the Elvis ex history
buffer’s inputtab option to tab, via the following command:

:(Elvis ex history)set inputtab=tab

Tag Stacks

Tag commands

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the tags
file

stac[k] Display the current tag stack

po[p][!] Pop a cursor position off the stack, restoring the cursor
to its previous position

elvis | 31

Command-mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file
and move to that location; the current location is automatically pushed
onto the tag stack

^T Return to the previous location in the tag stack

Edit-Compile Speedup

Program development commands

Command Option Function

cc[!] [args] ccprg Run the C compiler; useful for recompiling
an individual file

mak[e][!] [args] makeprg Recompile everything that needs recompil-
ing (usually via make (1))

er[rlist][!] [file] Move to the next error’s location

Display modes

Mode Display Appearance

normal No formatting; display text as it exists in the file

syntax Like normal, but with syntax coloring turned on

hex An interactive hex dump, reminiscent of mainframe hex dumps; good
for editing binary files

html A simple web page formatter; the tag commands can follow links and
return

man Simple manpage formatter; like the output of nroff -man

Display-mode commands

Command Function

di[splay] [mode [lang]] Change the display mode to mode ; use lang for
syntax mode

32 | vi Editor Pocket Reference

Command Function

no[rmal] Same as :display normal, but much easier to
type

Options for print management

Option Function

lptype, lp The printer type

lpconvert, lpcvt If set, convert Latin-8 extended ASCII to PC-8 extended
ASCII

lpcrlf, lpc The printer needs CR-LF to end each line

lpout, lpo The file or command to print to

lpcolumns, lpcols The printer’s width

lpwrap, lpw Simulate line wrapping

lplines, lprows The length of the printer’s page

lpformfeed, lpff Send a formfeed after the last page

lppaper, lpp Size of the paper (letter, A4, etc.); only for PostScript
printers

Values for the lptype option

Name Printer Type

ps PostScript; one logical page per sheet of paper

ps2 PostScript; two logical pages per sheet of paper

epson Most dot-matrix printers; no graphic characters supported

pana Panasonic dot-matrix printers

ibm Dot-matrix printers with IBM graphic characters

hp Hewlett-Packard printers and most non-PostScript laser printers

cr Line printers; overtyping is done with carriage return

bs Overtyping is done via backspace characters; this setting is the closest to
traditional Unix nroff

dumb Plain ASCII; no font control

elvis | 33

elvis 2.0 Set Options

Option Default

autoiconify (aic) noautoiconify

backup (bk) nobackup

binary (bin) (Set automatically)

boldfont (xfb)

bufdisplay (bd) normal

ccprg (cp) cc ($1?$1:$2)

commentfont (cfont)

directory (dir)

display (mode) normal

elvispath (epath) (System dependent)

focusnew (fn) focusnew

functionfont (ffont)

gdefault (gd) nogdefault

home (home) $HOME

italicfont (xfi)

keywordfont (kfont)

lpcolumns (lpcols) 80

lpcrlf (lpc) nolpcrlf

lpformfeed (lpff) nolpformfeed

lplines (lprows) 60

lppaper (lpp) letter

lpout (lpo)

lptype (lpt) dumb

lpwrap (lpw) lpwrap

makeprg (mp) make $1

normalfont (xfn)

34 | vi Editor Pocket Reference

Option Default

otherfont (ofont)

prepfont (pfont)

ruler (ru) noruler

safer (trapunsafe) nosafer

showmarkups (smu) noshowmarkups

sidescroll (ss) 0

stringfont (sfont)

taglength (tl) 0

tags (tagpath) tags

tagstack (tsk) tagstack

undolevels (ul) 0

variablefont (vfont)

warpback (wb) nowarpback

warpto (wt) don’t

vim—vi Improved

Important Command-Line Arguments
–ccommand

Execute command at startup. (POSIX version of the his-
toric +command )

–R
Start in read-only mode, setting the readonly option.

–s
Enter batch (script) mode. This is only for ex and intended
for running editing scripts (POSIX version of the historic
“–” argument).

–b
Start in binary mode.

vim—vi Improved | 35

–f
For the GUI version, stay in the foreground.

–g
Start the GUI version of vim, if it has been compiled in.

–o [N]
Open N windows, if given; otherwise open one window
per file.

–iviminfo
Read the given viminfo file for initialization, instead of the
default viminfo file.

–n
Don't create a swap file: recovery won't be possible.

–qfilename
Treat filename as the “quick fix” file.

–uvimrc
Read the given .vimrc file for initialization and skip all
other normal initialization steps.

–Ugvimrc
Read the given .gvimrc file for GUI initialization and skip
all other normal GUI initialization steps.

–Z
Enter restricted mode (same as having a leading r in the
name).

vim Window Management Commands

Command Function

[N]sp[lit] [position] [file] Split the current window in half

[N]new [position] [file] Create a new window, editing an empty buffer

[N]sv[iew] [position] [file] Same as :split, but set the readonly op-
tion for the buffer

q[uit][!] Quit the current window (exit if given in the
last window)

clo[se][!] Close the current window; behavior affected
by the hidden option

36 | vi Editor Pocket Reference

Command Function

hid[e] Close the current window, if it's not the last
one on the screen

on[ly] Make this window the only one on the screen

res[ize] [±n] Increase or decrease the current window
height by n

res[ize] [n] Set the current window height to n if supplied,
otherwise, set it to the largest size possible
without hiding the other windows

qa[ll][!] Exit vim

wqa[ll][!] Write all changed buffers and exit

xa[ll][!]

wa[ll][!] Write all modified buffers that have filenames

[N]sn[ext] Split the window and move to the next file in
the argument list, or to the N th file if a count
is supplied

sta[g] [tagname] Split the window and run the :tag command
as appropriate in the new window

Window commands from vi mode

Command Function

^W s Same as :split without a file argument; ̂ W ^S may not work on
all terminals^W S

^W ^S

^W n Same as :new without a file argument

^W ^N

^W ^ Perform :split #, split the window, and edit the alternate file

^W ^^

^W q Same as the :quit command; ̂ W ̂ Q may not work on all terminals

^W ^Q

^W c Same as the :close command

vim—vi Improved | 37

Command Function

^W o Like the :only command

^W ^O

^W <DOWN> Move cursor to n th window below the current one

^W j

^W ^J

^W <UP> Move cursor to n th window above the current one

^W k

^W ^K

^W w With count, go to n th window; otherwise, move to the window
below the current one; if in the bottom window, move to the top
one

^W ^W

^W W With count, go to n th window; otherwise, move to window above
the current one; if in the top window, move to the bottom one

^W t Move the cursor to the top window

^W ^T

^W b Move the cursor to the bottom window

^W ^B

^W p Go to the most recently accessed (previous) window

^W ^P

^W r Rotate all the windows downwards; the cursor stays in the same
window^W ^R

^W R Rotate all the windows upwards; the cursor stays in the same win-
dow

^W x Without count, exchange the current window with the next one; if
there is no next window, exchange with the previous window. With
count, exchange the current window with the n th window (first
window is 1; the cursor is put in the other window)

^W ^X

^W = Make all windows the same height.

^W - Decrease current window height

^W + Increase current window height

38 | vi Editor Pocket Reference

Command Function

^W _ Set the current window size to the value given in a preceding count

^W ^_

zN RETURN Set the current window height to N

^W] Split the current window; in the new upper window, use the iden-
tifier under the cursor as a tag and go to it^W ^]

^W f Split the current window and edit the filename under the cursor in
the new window^W ^F

^W i Open a new window; move the cursor to the first line that matches
the keyword under the cursor^W ^I

^W d Open a new window, with the cursor on the first macro definition
line that contains the keyword under the cursor^W ^D

Extended Regular Expressions
\|

Indicates alternation.

\+
Matches one or more of the preceding regular expressions.

\=
Matches zero or one of the preceding regular expression.

\{n,m}
Matches n to m of the preceding regular expression, as
much as possible. n and m are numbers between 0 and
32,000; vim only requires the left brace to be preceded by
a backslash, but not the right brace.

\{n}
Matches n of the preceding regular expression.

\{n,}
Matches at least n of the preceding regular expression, as
much as possible.

vim—vi Improved | 39

\{,m}
Matches 0 to m of the preceding regular expression, as
much as possible.

\{}
Matches 0 or more of the preceding regular expressions,
as much as possible (same as *).

\{-n,m}
Matches n to m of the preceding regular expression, as few
as possible.

\{-n}
Matches n of the preceding regular expression.

\{-n,}
Matches at least n of the preceding regular expression, as
few as possible.

\{-,m}
Matches 0 to m of the preceding regular expression, as few
as possible.

\i
Matches any identifier character, as defined by the isi
dent option.

\I
Like \i, excluding digits.

\k
Matches any keyword character, as defined by the iskey
word option.

\K
Like \k, excluding digits.

\f
Matches any filename character, as defined by the is-
fname option.

\F
Like \f, excluding digits.

\p
Matches any printable character, as defined by the
isprint option.

40 | vi Editor Pocket Reference

\P
Like \p, excluding digits.

\s
Matches a whitespace character (exactly space or tab).

\S
Matches anything that isn’t a space or a tab.

\b
Backspace.

\e
Escape.

\r
Carriage return.

\t
Tab.

\n
Reserved for future use.

~
Matches the last given substitute (i.e., replacement) string.

\(…\)
Provides grouping for *, \+, and \=, as well as making
matched subtexts available in the replacement part of a
substitute command (\1, \2, etc.).

\1
Matches the same string that was matched by the first
subexpression in \(and \). \2, \3 and so on may be used
to represent the second, third, and so forth subexpres-
sions.

The isident, iskeyword, isfname, and isprint options define the
characters that appear in identifiers, keywords, and filenames,
and that are printable, respectively.

vim—vi Improved | 41

Command-Line History and Completion

History commands

Key Meaning

 , Move up (previous), down (more re-
cent) in the history

, → Move left, right on the recalled line

INS Toggle insert/overstrike mode; default
is insert mode

BACKSPACE Delete characters

SHIFT or CONTROL combined with or Move left or right one word at a time

^B or HOME Move to the beginning of the command
line

^E or END Move to the end of the command line

If vim is in vi compatibility mode, ESC acts likes RETURN
and executes the command. When vi compatibility is turned
off, ESC exits the command line without executing anything.

The wildchar option contains the character you type when you
want vim to do a completion. The default value is the tab
character. You can use completion for the following:

Command names
Available at the start of the command line

Tag values
After you’ve typed :tag

Filenames
When typing a command that takes a filename argument
(see :help suffixes for details)

Option values
When entering a :set command, for both option names
and their values

42 | vi Editor Pocket Reference

Completion commands

Command Function

^D List the names that match the pattern; for filenames, direc-
tories are highlighted

Value of wildchar (Default: tab) Performs a match, inserting the generated
text; hitting TAB successively cycles among all the matches

^N Go to next of multiple wildchar matches, if any; otherwise
recall more recent history line

^P Go to previous of multiple wildchar matches, if any; oth-
erwise recall older history line

^A Insert all names that match the pattern

^L If there is exactly one match, insert it; otherwise, expand to
the longest common prefix of the multiple matches

Tag Stacks

Tag commands

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the
tags file

[count]ta[g][!] Jump to the count th newer entry in the tag stack

[count]po[p][!] Pop a cursor position off the stack, restoring the
cursor to its previous position

tags Display the contents of the tag stack

ts[elect][!] [tagstring] List the tags that match tagstring, using the in-
formation in the tags file(s)

sts[elect][!] [tagstring] Like :tselect, but splits the window for the
selected tag

[count]tn[ext][!] Jump to the count th next matching tag (default
1)

[count]tp[revious][!] Jump to the count th previous matching tag (de-
fault 1)

vim—vi Improved | 43

Command Function

[count]tN[ext][!]

[count]tr[ewind][!] Jump to the first matching tag; with count, jump
to the count th matching tag

tl[ast][!] Jump to the last matching tag

Command-mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in
the tags file and move to that location; the current location
is automatically pushed to the tag stack

g <LeftMouse>

CTRL-<LeftMouse>

^T Return to the previous location in the tag stack, i.e., pop
off one element

Edit-Compile Speedup

Program development commands

Command Function

mak[e] [arguments] Run make, based on the settings of several options
as described in the next table, then go to the location
of the first error

cf[ile][!] [errorfile] Read the error file and jump to the first error

cl[ist][!] List the errors that include a filename

[count]cn[ext][!] Display the count th next error that includes a file-
name

[count]cN[ext][!]

[count]cp[revious][!]

Display the count th previous error that includes a
filename

clast[!] [n] Display error n if supplied; otherwise, display the last
error

crewind[!] [n] Display error n if supplied

44 | vi Editor Pocket Reference

Command Function

cc[!] [n] Displays error n if supplied, otherwise redisplays the
current error

cq[uit] Quit with an error code, so that the compiler won't
compile the same file again; intended primarily for
the Amiga compiler

Program development options

Option Value Function

shell /bin/sh The shell to execute the command for
rebuilding your program

makeprg make The program that actually handles the
recompilation

shellpipe 2>&1| tee Whatever is needed to cause the shell to
save both standard output and standard
error from the compilation in the error
file

makeef /tmp/vim##.err The name of a file that will contain the
compiler output; the ## causes vim to
create unique filenames

errorformat %f:%l:\ %m A description of what error messages
from the compiler look like; this example
value is for GCC, the GNU C compiler

Programming Assistance

Indentation and formatting options

Option Function

autoindent Simple-minded indentation; uses that of the previous line

smartindent Similar to autoindent, but knows a little about C syntax;
deprecated in favor of cindent

cindent Enables automatic indenting for C programs and is quite smart;
C formatting is affected by the rest of the options in this table

vim—vi Improved | 45

Option Function

cinkeys Input keys that trigger indentation options

cinoptions Tailor your preferred indentation style

cinwords Keywords that start an extra indentation on the following line

formatoptions A number of single-letter flags that control several behaviors,
notably how comments are formatted as you type them

comments Describes different formatting options for different kinds of
comments, both those with starting and ending delimiters,
as in C, and those that start with a single symbol and go to the
end of the line, such as in a Makefile or shell program

Identifier search commands

Command Function

[i Display the first line that contains the keyword under the cursor

]i Display the first line that contains the keyword under the cursor, but
starts the search at the current position in the file; this command is
most effective when given a count

[I Display all lines that contain the keyword under the cursor; filenames
and line numbers are displayed

]I Display all lines that contain the keyword under the cursor, but start
from the current position in the file

[^I Jump to the first occurrence of the keyword under the cursor

] ^I Jump to the first occurrence of the keyword under the cursor, but start
the search from the current position

^W i Open a new window showing the location of the first (or count th)
occurrence of the identifier under the cursor^W ^I

[d Display the first macro definition for the identifier under the cursor

]d Display the first macro definition for the identifier under the cursor,
but start the search from the current position

[D Display all macro definitions for the identifier under the cursor; file-
names and line numbers are displayed

46 | vi Editor Pocket Reference

Command Function

]D Display all macro definitions for the identifier under the cursor, but
start the search from the current positon

[^D Jump to the first macro definition for the identifier under the cursor

] ^D Jump to the first macro definition for the identifier under the cursor,
but start the search from the current position

^W d Open a new window showing the location of the first (or count th)
macro definition of the identifier under the cursor^W ^D

Identifier search commands from ex mode

Command Function

[range]is[earch][!] [count] [/]
pattern[/]

Like [i and]i but searches in range
lines (the default is the whole file). With-
out the slashes, a word search is done;
with slashes, a regular expression search
is done

[range]il[ist][!] [/]pattern[/] Like [I and]I but searches in range
lines; the default is the whole file

[range]ij[ump][!] [count] [/]pat-
tern[/]

Like [^I and] ^I but searches in
range lines; the default is the whole file

[range]isp[lit][!] [count] [/]
pattern[/]

Like ^W i and ^W ^I but searches in
range lines; the default is the whole file

[range]ds[earch][!] [count] [/]
pattern[/]

Like [d and]d but searches in range
lines; the default is the whole file

[range]dl[ist][!] [/]pattern[/] Like [D and]D but searches in range
lines; the default is the whole file

[range]dj[ump][!] [count] [/]pat-
tern[/]

Like [^D and] ^D but searches in
range lines. The default is the whole file.

[range]dsp[lit][!] [count] [/]
pattern[/]

Like ^W d and ^W ^D but searches in
range lines; the default is the whole file

che[ckpath][!] List all the included files that couldn't be
found; with the !, list all the included
files

vim—vi Improved | 47

Extended matching commands

Command Function

% Extended to match the /* and */ of C comments, and also the C
preprocessor conditionals, (#if, #endif, etc.)

[(Move to the count th previous unmatched (

[) Move to the count th next unmatched)

[{ Move to the count th previous unmatched {

[} Move to the count th next unmatched }

[# Move to the count th previous unmatched #if or #else

]# Move to the count th next unmatched #else or #endif

[*, [/ Move to the count th previous unmatched start of a C comment, /*

]*,]/ Move to the count th next unmatched end of a C comment, */

vim 5.1 Set Options

Option Default

background (bg) dark or light

backspace (bs) 0

backup (bk) nobackup

backupdir (bdir) .,~/tmp/,~/

backupext (bex) ~

binary (bin) nobinary

cindent (cin) nocindent

cinkeys (cink) 0{,0},:,0#,!^F,o,O,e

cinoptions (cino)

cinwords (cinw) if,else,while,do,for,switch

comments (com)

compatible (cp) cp, nocp when a .vimrc file is found

cpoptions (cpo) aABceFs

48 | vi Editor Pocket Reference

Option Default

define (def) ^#\s*define

directory (dir) .,~/tmp,/tmp

equalprg (ep)

errorfile (ef) errors.err

errorformat (efm) (Too long to print)

expandtab (et) noexpandtab

fileformat (ff) unix

fileformats (ffs) dos,unix

formatoptions (fo) vim default: tcq; vi default: vt

gdefault (gd) nogdefault

guifont (gfn)

hidden (hid) nohidden

hlsearch (hls) nohlsearch

history (hi) vim default: 20; vi default: 0

icon noicon

iconstring

include (inc) ^#\s*include

incsearch (is) noincsearch

isfname (isf) @,48-57,/,.,-,_,+,,,$,:,~

isident (isi) @,48-57,_,192-255

iskeyword (isk) @,48-57,_,192-255

isprint (isp) @,161-255

makeef (mef) /tmp/vim##.err

makeprg (mp) make

mouse

mousehide (mh) nomousehide

paste nopaste

ruler (ru) noruler

vim—vi Improved | 49

Option Default

secure nosecure

shellpipe (sp)

shellredir (srr)

showmode (smd) vim default: smd; vi default: nosmd

sidescroll (ss) 0

smartcase (scs) nosmartcase

suffixes *.bak,~,.o,.h,.info,.swp

taglength (tl) 0

tagrelative (tr) vim default: tr; vi default: notr

tags (tag) ./tags,tags

tildeop (top) notildeop

undolevels (ul) 1000

viminfo (vi)

writebackup (wb) writebackup

vile—vi Like Emacs

Important Command-Line Arguments
–?
vile prints a short usage summary and exits.

–gN
vile begins editing on the first file at the specified line
number; this can also be given as +N.

–spattern
In the first file, vile executes an initial search for the given
pattern; this can also be given as +/pattern.

–h
Invokes vile on the help file.

50 | vi Editor Pocket Reference

–R
Invokes vile in “readonly” mode; no writes are permitted
while in this mode.

–v
Invokes vile in “view” mode; no changes are permitted to
any buffer while in this mode.

@cmdfile
vile runs the specified file as its startup file and bypasses
any normal startup file.

vile Window Management Commands

Command Key Sequence(s) Function

delete-other-windows ^O, ^X 1 Eliminate all windows except
the current one

delete-window ^K, ^X 0 Destroy the current window,
unless it's the last one

edit-file, E, e ^X e Bring given (or under-cursor,
for ̂ X e) file or existing buffer
into window

find-file

grow-window V Increase the size of the current
window by count

move-next-window-
down

^A ^E Move next window down (or
buffer up) by count lines

move-next-window-up ^A ^Y Move next window up (or buf-
fer down) by count lines

move-window-left ^X ^L Scroll window to left by
count columns, half screen if
count unspecified

move-window-right ^X ^R Scroll window to right by
count columns, half screen if
count unspecified

next-window ^X o Move to the next window

position- window zwhere Reframe with cursor specified
by where, as follows: center

vile—vi Like Emacs | 51

Command Key Sequence(s) Function
(., M, m), top (RETURN , H, t),
or bottom (-, L, b)

previous- window ^X O Move to the previous window

resize-window Change the current window to
count lines

restore- window Return to window saved with
save-window

save-window Mark a window for later return
with restore-window

scroll-next-window-
down

^A ^D Move next window down by
count half screens

scroll-next-window-
up

^A ^U Move next window up by
count half screens

shrink-window v Decrease the size of the cur-
rent window by count lines

split- current- win
dow

^X 2 Split the window in half; a
count of 1 or 2 chooses which
becomes current

view-file Bring given file or existing buf-
fer into window; mark it
“view-only”

historical-buffer _ Display a list of the first nine
buffers; a digit moves to the
given buffer, _ _ moves to the
most recently edited file

toggle-buffer-list * Pop up/down a window
showing all the vile buffers

Extended Regular Expressions
\|

Indicates alternation.

\+
Matches one or more of the preceding regular expressions.

52 | vi Editor Pocket Reference

\?
Matches zero or one of the preceding regular expression.

\(…\)
Provides grouping for *, \+, and \?, as well as making
matched subtexts available in the replacement part of a
substitute command.

\s \S
Matches whitespace and nonwhitespace characters, re-
spectively.

\w \W
Matches “word-constituent” characters (alphanumerics
and the underscore, ‘_’) and nonword-constituent char-
acters, respectively.

\d \D
Matches digits and nondigits, respectively.

\p \P
Matches printable and nonprintable characters, respec-
tively. Whitespace is considered to be printable.

vile allows the escape sequences \b, \f, \r, \t, and \n, to appear
in the replacement part of a substitute command. They stand
for backspace, formfeed, carriage return, tab, and newline, re-
spectively. Also, from the vile documentation:

Note that vile mimics perl ’s handling of \u\L
\1\E instead of vi ’s. Given :s/\(abc\)/\u\L\1
\E/, vi will replace with abc whereas vile and
perl will replace with Abc. This is somewhat
more useful for capitalizing words.

Command-Line History and Completion
vile stores all your ex commands in a buffer named [His
tory]. Options control your access to it and the use of the min-
ibuffer (the colon command line).

vile—vi Like Emacs | 53

History options

Option Meaning

history Log commands from the colon command line in the [His
tory] buffer

mini-edit The character that toggles the editing mode in the minibuffer to
use vi motion commands; in Version 8.0, you can also use the i,
I, a, and A vi commands

mini-hilite Define the highlight attribute to use when the user toggles the
editing mode in the minibuffer. The value should be one of
none, underline, bold, italic, or reverse; the default
is reverse

History commands

Key Meaning

 , Move up (previous), down (more recent) in the history

, → Move left, right on the recalled line

BACKSPACE Delete characters

The ex command line provides completion of various sorts.
Completion applies to built-in and user-defined vile com-
mands, tags, filenames, modes, variables, and to the terminal
characters (the character setting such as backspace, suspend,
and so on, derived from your stty settings).

Tag Stacks

Tag commands

Command Function

ta[g][!] [tagstring] Edit the file containing tagstring as defined in the tags
file

pop[!] Pop a cursor position off the stack, restoring the cursor
to its previous position

54 | vi Editor Pocket Reference

Command Function

next-tag Continue searching through the tags file for more match-
es

show-tagstack Create a new window that displays the tag stack; the
display changes as tags are pushed to or popped off the
stack

Command mode tag commands

Command Function

^] Look up the location of the identifier under the cursor in the tags file
and move to that location; the current location is automatically pushed
to the tag stack

^T Return to the previous location in the tag stack, i.e., pop off one element

^X ^]

^A ^] Same as the :next-tag command

Edit-Compile Speedup

Program development vi mode commands

Command Function

^X !command RETURN Run command, saving the output in a buffer named
[Output]

^X ^X Find the next error; vile parses the output and moves
to the location of each successive error

The error messages are parsed using regular expressions in the
buffer [Error Expressions]. vile creates this buffer automati-
cally and uses it when you use ^X ^X. You can add expressions
to it as needed.

You can point the error finder at an arbitrary buffer (not just
the output of shell commands) using the :error-buffer com-
mand. This lets you use the error finder on the output of
previous compiler or egrep runs.

vile—vi Like Emacs | 55

vile 8.0 Set Options

Option Default

alt-tabpos noatp

animated animated

autobuffer (ab) autobuffer

autosave (as) noautosave

autosavecnt (ascnt) 256

backspacelimit (bl) backspacelimit

backup-style off

bcolor

check-modtime nocheck-modtime

cmode off

comment-prefix ^\s*\(\s*[#*>]\)\+

comments ^\s*/\?\(\s*[#*>]\)\+/\?\s*$

dirc nodirc

dos nodos

fcolor

fence-begin /*

fence-end */

fence-if ^\s*#\s*if

fence-elif ^\s*#\s*elif\>

fence-else ^\s*#\s*else\>

fence-fi ^\s*#\s*endif\>

fence-pairs {}()[]

glob !echo %s

history (hi) history

horizscroll (hs) horizscroll

linewrap (lw) nolinewrap

56 | vi Editor Pocket Reference

Option Default

maplonger nomaplonger

meta-insert-bindings (mib) nomib

mini-edit ^G

mini-hilite (mh) reverse

popup-choices (pc) delayed

preamble (pre)

resolve-links noresolve-links

ruler noruler

showmode (smd) noshowmode

sideways 0

suffixes (suf)

tabinsert (ti) tabinsert

tagignorecase (tc) notagignorecase

taglength (tl) 0

tagrelative (tr) tagrelative

tags tags

tagword (tw) notagword

undolimit (ul) 10

unprintable-as-octal (uo) nounprintable-as-octal

visual-matches none

xterm-mouse noxterm-mouse

Clone Source and Contact Information
Editor nvi

Author Keith Bostic

Email bostic@bostic.com

Source http://www.bostic.com/vi

Clone Source and Contact Information | 57

Editor elvis

Author Steve Kirkendall

Email kirkenda@cs.pdx.edu

Source ftp://ftp.cs.pdx.edu/pub/elvis/README.html

Editor vim

Author Bram Moolenaar

Email Bram@vim.org

Source http://www.vim.org/

Editor vile

Authors Kevin Buettner, Tom Dickey, and Paul Fox

Email vile-bugs@foxharp.boston.ma.us

Source http://www.clark.net/pub/dickey/vile/vile.html

58 | vi Editor Pocket Reference

	Table of Contents
	vi Editor Pocket Reference
	Introduction
	Conventions
	Command-Line Options
	vi Commands
	Movement Commands
	Editing Commands
	Exit Commands
	Solaris vi Command-Mode Tag Commands
	Buffer Names
	Buffer and Marking Commands

	Input Mode Shortcuts
	Word Abbreviation
	Command and Input Mode Maps
	Executable Buffers
	Automatic Indentation

	Substitution and Regular Expressions
	The Substitute Command
	Substitution flags

	vi Regular Expressions
	POSIX Bracket Expressions
	POSIX character classes

	Metacharacters Used in Replacement Strings
	More Substitution Tricks

	ex Commands
	Command Syntax
	Address Symbols
	Command Option Symbols
	Alphabetical List of Commands

	Initialization and Recovery
	Initialization
	Recovery

	vi Options
	Enhanced Tags and Tag Stacks
	Exuberant ctags
	Extended ctags keywords

	Solaris 2.6 vi Tag Stacking
	Tag commands
	Command-mode tag commands
	Options for tag management

	nvi—New vi
	Important Command-Line Arguments
	nvi Window Management Commands
	Extended Regular Expressions
	Command-Line History and Completion Options
	Tag Stacks
	Tag commands
	Command-mode tag commands

	nvi 1.79 Additional Set Options

	elvis
	Important Command-Line Arguments
	elvis Window Management Commands
	Arguments to the :window command
	Window commands from vi command mode

	Extended Regular Expressions
	Command-Line History and Completion Movement Keys
	Tag Stacks
	Tag commands
	Command-mode tag commands

	Edit-Compile Speedup
	Program development commands
	Display modes
	Display-mode commands
	Options for print management
	Values for the lptype option

	elvis 2.0 Set Options

	vim—vi Improved
	Important Command-Line Arguments
	vim Window Management Commands
	Window commands from vi mode

	Extended Regular Expressions
	Command-Line History and Completion
	History commands
	Completion commands

	Tag Stacks
	Tag commands
	Command-mode tag commands

	Edit-Compile Speedup
	Program development commands
	Program development options

	Programming Assistance
	Indentation and formatting options
	Identifier search commands
	Identifier search commands from ex mode
	Extended matching commands

	vim 5.1 Set Options

	vile—vi Like Emacs
	Important Command-Line Arguments
	vile Window Management Commands
	Extended Regular Expressions
	Command-Line History and Completion
	History options
	History commands

	Tag Stacks
	Tag commands
	Command mode tag commands

	Edit-Compile Speedup
	Program development vi mode commands

	vile 8.0 Set Options

	Clone Source and Contact Information

